THREE PATHS TO THE RANK METRIC

Linearized polynomials

M. Ceria Politecnico di Bari

TEXTBOOKS

Wu, Baofeng, and Zhuojun Liu. Linearized polynomials over finite fields revisited. Finite Fields and Their Applications 22 (2013): 79-100.

Polverino, O., Zullo, F. (2020). Connections between scattered linear sets and MRD-codes, Bulletin of the ICA Volume 89 (2020), 46–74

LINEARIZED POLYNOMIALS

Polynomials of the form

$$L(x) := \sum_{i=0}^{r} a_i x^{q^i}, r \in \mathbb{N}, a_i \in \mathbb{F}_{q^n}$$

$$\mathcal{L}(\mathbb{F}_{q^n}) = \{ \sum_{i=0}^r a_i x^{q^i}, r \in \mathbb{N}, a_i \in \mathbb{F}_{q^n} \}$$

AND THE modular VERSION

Linearized polynomials induce \mathbb{F}_q -linear endomorphisms of \mathbb{F}_{q^n}

As maps between finite fields we consider them as

$$L(x) = \sum_{i=0}^{n-1} a_i x^{q^i} \in \mathbb{F}_{q^n}[x]/(x^{q^n} - x)$$

$$\mathcal{L}_n(\mathbb{F}_{q^n}) = \{all \sum_{i=0}^{n-1} a_i x^{q^i}\}$$

Multiplication (ORE)

$$L_1(x) := \sum_{i=0}^r a_i x^{q^i}$$
 $L_2(x) := \sum_{i=0}^s b_i x^{q^i}$

Not closed for multiplication: symbolic multiplication is composition which makes the set a ring:

$$L_1(x) \circ L_2(x) = L_1(L_2(x))$$

 $L_2(x) \circ L_1(x) = L_2(L_1(x))$

The structure of $\mathcal{L}(\mathbb{F}_{q^n}), \mathcal{L}_n(\mathbb{F}_{q^n})$

Vector space over \mathbb{F}_{q^n}

sum and multiplication by elements in \mathbb{F}_{q^n}

Algebra over \mathbb{F}_q

Addition - composition - scalar multiplication by elements of \mathbb{F}_q

 $\mathbb{F}_{q^m} \subseteq \mathbb{F}_{q^n}$ subfield $(m \mid n)$; $\mathcal{L}_n(\mathbb{F}_{q^m}) \subseteq \mathcal{L}_n(\mathbb{F}_{q^n})$, \mathbb{F}_q -subalgebra.

ORE POLYNOMIALS

R[y], R domain (non-necessarily commutative).

CONJUGATE

$$\alpha: R \to R$$

DERIVATIVE

$$\delta: R \to R$$

$$\mathbf{y} \cdot \mathbf{r} = \alpha(\mathbf{r})\mathbf{y} + \delta(\mathbf{r})$$

ORE POLYNOMIALS

$$y \cdot r = \alpha(r)y + \delta(r)$$

ORE EXTENSION $R[y; \alpha, \delta]$

- $\forall r \in R \ \alpha(r) = 0 \Rightarrow r = 0 \ (\alpha \text{ injective});$
- α ring endomorphism;
- δ is an α -derivation
 - additive;
 - $\forall r, r' \in R : \delta(rr') = \alpha(r)\delta(r') + \delta(r)r'$

Skew polynomials over \mathbb{F}_{q^n}

Our α

$$\sigma: \mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$$
$$y \mapsto y^q$$

Our
$$\delta$$
 $\delta = 0$

$$\mathbb{F}_{q^n}[y;\sigma]$$

$$y \cdot a = \sigma(a)y = a^q y$$

It is a PID.

ON THE ORE POLYNOMIALS

We will need Ore polynomials of the form $\mathbb{F}_{q^n}[y; \sigma]$.

SOME FACTS

- $\mathbb{F}_{q^n}[y; \sigma]$ is a noncommutative integral domain;
- $\mathbb{F}_{q^n}[y;\sigma]$ is **not** a UFD;
- $\mathbb{F}_{q^n}[y; \sigma]$ is right and left Euclidean domain (standard degree);
- The centre of $\mathbb{F}_{q^n}[y;\sigma]$ is $\mathbb{F}_q[y^n;\sigma] \simeq \mathbb{F}_q[z]$ (commutative polynomial ring) and n the order of σ ;
- $\mathbb{F}_{q^n}[y;\sigma]$ is a PID and its prime bilateral ideals are generated by elements of the form $f(y^n)$, with n the order of σ and $f \in \mathbb{F}_q[z]$ irreducible.

(See for example N. Jacobson, Finite-dimensional division algebras over fields, Springer, Berlin, 1996).

DIVISION, GCDs, LCMs...

We can do right and left Euclidean division, so, let $f, g \in \mathbb{F}_{q^n}[y; \sigma]$

gcrd(f,g)

unique monic $d \in \mathbb{F}_{q^n}[y; \sigma]$ of maximal degree s.t. there are $u, u' \in \mathbb{F}_{q^n}[y; \sigma]$ s.t. f = ud, g = u'd

IcIm(f,g)

unique monic $m \in \mathbb{F}_{q^n}[y; \sigma]$ of minimal degree s.t. there are $u, u' \in \mathbb{F}_{q^n}[y; \sigma]$ s.t. m = uf = u'g.

MINIMAL CENTRAL LEFT MULTIPLE OF f

unique monic $F(y^n) \in \mathbb{F}_{q^n}[y; \sigma]$ of minimal degree in $Z(\mathbb{F}_{q^n}[y; \sigma])$ s.t. $F(y^n) = gf$ for some $g \in \mathbb{F}_{q^n}[y; \sigma]$.

Some properties

Let us consider $\mathbb{F}_{q^n}[y; \sigma]$

If f factorizes as $f = g_1 \cdots g_k = h_1 \cdots h_m$ then k = m and there is a permutation $\pi \in S_k$: $\deg(g_{\pi(i)}) = \deg(h_i)$ for each i;

If F irreducible polynomial in $\mathbb{F}_q[z]$ then every irreducible right divisor of $F(y^n)$ in $\mathbb{F}_{q^n}[y;\sigma]$ has degree equal to $\deg(F)$ and every right divisor of $F(y^n)$ in $\mathbb{F}_{q^n}[y;\sigma]$ has degree equal to $k \deg(F)$ for some $k \in \{1,...,n\}$

 $f \in \mathbb{F}_{q^n}[y; \sigma]$ irreducible, then its minimal central left multiple $F(y^n)$ is s.t. F is an irreducible polynomial in $\mathbb{F}_q[z]$ of degree $\deg(f)$.

ORE AND LINEARIZED POLYNOMIALS

IDEA

$$1 \mapsto x$$

$$y \mapsto x^{q}$$

$$y^{a} \mapsto x^{q^{a}}$$

$$y^{a+b} = y^{a}y^{b} \mapsto x^{q^{a}} \circ x^{q^{b}} = x^{(q^{a+b})}.$$

$$\phi: \mathbb{F}_{q^n}[y;\sigma] \to \mathcal{L}(\mathbb{F}_{q^n})$$
$$\sum_{i=0}^r a_i y^i \mapsto \sum_{i=0}^r a_i x^{q^i}$$

ORE AND LINEARIZED POLYNOMIALS

$$\phi: \mathbb{F}_{q^n}[y;\sigma] \to \mathcal{L}(\mathbb{F}_{q^n})$$
$$\sum_{i=0}^r a_i y^i \mapsto \sum_{i=0}^r a_i x^{q^i}$$

Algebra isomorphism, so...

$$\mathcal{L}(\mathbb{F}_{q^n})\cong \mathbb{F}_{q^n}[y;\sigma]$$

ORE AND LINEARIZED POLYNOMIALS

Two-side ideals

$$(y^n - 1) \triangleleft \mathbb{F}_{q^n}[y; \sigma]$$

 $(x^{q^n} - x) \triangleleft \mathcal{L}(\mathbb{F}_{q^n})$

$$\phi(y^n - 1) = x^{q^n} - x$$

$$\mathcal{L}_n(\mathbb{F}_{q^n}) = \mathcal{L}(\mathbb{F}_{q^n})/(x^{q^n} - x) \cong \mathbb{F}_{q^n}[y; \sigma]/(y^n - 1)$$

SEMI-LINEAR GROUP ALGEBRA

B. McDonald, Finite Rings with Identity, Dekker, New York, 1974.

Let
$$G = Gal(\mathbb{F}_{q^n}/\mathbb{F}_q) = \langle \sigma \rangle$$

 $\mathbb{F}_{q^n}[G]$: \mathbb{F}_{q^n} -vector space generated by G's elements.

$$(a\sigma^i)(b\sigma^j) = a\sigma^i(b)\sigma^{i+j} = ab^{q^i}\sigma^{i+j}, \ a,b \in \mathbb{F}_{q^n}$$

Semilinear group ring with this kind of multiplication. Scalar multiplication with elements in \mathbb{F}_q : \mathbb{F}_q -algebra.

AND ANOTHER ISOMORPHISM

$$\mathbb{F}_{q^n}[G] \to \mathcal{L}_n(\mathbb{F}_{q^n})$$

$$\sum_{i=0}^{n-1} a_i \sigma^i \mapsto \sum_{i=0}^{n-1} a_i x^{q^i}$$

$$\mathcal{L}_n(\mathbb{F}_{q^n}) \cong \mathbb{F}_{q^n}[G]$$

MATRIX ALGEBRA

B. McDonald, Finite Rings with Identity, Dekker, New York, 1974.

 $M_n(\mathbb{F}_q)$: matrix algebra over \mathbb{F}_q

 $End(\mathbb{F}_{q^n})$: endomorphisms of \mathbb{F}_{q^n} over \mathbb{F}_q .

The transformations can be induced by a linearized polynomial over \mathbb{F}_{q^n} .

 \mathbb{F}_q -ALGEBRA ISOMORPHISM

$$End(\mathbb{F}_{q^n}) \to \mathcal{L}_n(\mathbb{F}_{q^n})$$
$$\sum_{i=0}^{n-1} a_i \sigma^i \mapsto \sum_{i=0}^{n-1} a_i x^{q^i}$$

$$\mathcal{L}_n(\mathbb{F}_{q^n}) \cong End(\mathbb{F}_{q^n}) \cong M_n(\mathbb{F}_q)$$

COMPOSITION ALGEBRA

Suppose *E* is a *K*-vector space.

$$E^* = Hom_k(E, K)$$

Tensor space: $E^* \otimes_K E$: consider the multiplication, $\forall l_1, l_2 \in E^*$, $\forall x_1, x_2 \in E$

$$(I_1 \otimes X_1)(I_2 \otimes X_2) = I_1(X_2)I_2 \otimes X_1$$

and the expand via linearity.

COMPOSITION ALGEBRA

Associative non-commutative algebra.

$$\Lambda : E^* \otimes_K E \to End_K(E)$$

$$(I \otimes x)(y) \mapsto I(y)x$$

Isomorphism when $\dim_K(E)$ is finite giving

$$E^* \otimes_K E \cong End_K(E)$$

IN OUR CASE

$$E = \mathbb{F}_{q^n}$$
; $\dim_{\mathbb{F}_q}(E) = n$

We know

$$L_n(\mathbb{F}_{q^n})\cong End(\mathbb{F}_{q^n})$$

So...

$$L_n(\mathbb{F}_{q^n})\cong \mathbb{F}_{q^n}^*\otimes_{\mathbb{F}_q}\mathbb{F}_{q^n}$$

DICKSON MATRICES

Dickson matrix / σ -circulant

$$D_L=(a_{j-i}^{q^i})\in M_n(\mathbb{F}_{q^n})$$

ASSOCIATED TO

$$L(x) := \sum_{i=0}^{n-1} a_i x^{q^i}$$

DICKSON MATRICES

The linear transformation associated to L, if $B = \{\beta_0, ..., \beta_{n-1}\}$, can be described as

$$M_L = (\beta_j^{q^i})^{-1} D_L(\beta_j^{q^i})$$

DICKSON MATRICES

AN
$$\mathbb{F}_q$$
 – algebra

$$\mathcal{D}_n(\mathbb{F}_{q^n}) = (\beta_j^{q^i}) M_n(\mathbb{F}_{q^n}) (\beta_j^{q^i})^{-1}$$

$$\mathcal{D}_n(\mathbb{F}_{q^n})\cong M_n(\mathbb{F}_q)\cong \mathcal{L}_n(\mathbb{F}_{q^n})$$

RECALL ON MRMC

 $C \leq M_{n,m}(\mathbb{F}_q)$, we can see it as a subspace of $Hom(\mathbb{F}_q^m,\mathbb{F}_q^n)$.

$m \ge n$

We can see \mathbb{F}_q^n as a subspace of \mathbb{F}_q^m considering $Hom(\mathbb{F}_q^m,\mathbb{F}_q^n)$ as the subspace of $Hom(\mathbb{F}_q^m,\mathbb{F}_q^m)$ whose image is indeed contained in \mathbb{F}_q^n . We recall also that $\mathbb{F}_q^m \cong \mathbb{F}_{q^m}$ and that $End(\mathbb{F}_{q^m}) \cong \mathcal{L}_m(\mathbb{F}_{q^m})$

LINEARIZED POLYNOMIALS AND RMC

We can see a RMC as \mathbb{F}_q -subspace of $\mathcal{L}_m(\mathbb{F}_{q^m})$

We can then restate definitions in terms of linearized polynomials.

EXAMPLE: DUALITY

$$f,g \in \mathcal{L}_m(\mathbb{F}_{q^m})$$

BILINEAR FORM

$$b: \mathcal{L}_{m}(\mathbb{F}_{q^{m}}) \times \mathcal{L}_{m}(\mathbb{F}_{q^{m}}) \to \mathbb{F}_{q}$$
$$(f,g) \mapsto Tr_{q^{m}/q} \left(\sum_{i=0}^{m-1} f_{i}g_{i} \right)$$

DUALITY

$$C^{\perp} = \{ f \in \mathcal{L}_m(\mathbb{F}_{q^m}) : b(f,g) = 0, \forall g \in C \}$$

ADJOINT CODE

Adjoint of
$$L(x) = \sum_{i=0}^{m-1} a_i x^{q^i}$$
 w.r.t.

BILINEAR FORM

$$b: \mathcal{L}_{m}(\mathbb{F}_{q^{m}}) \times \mathcal{L}_{m}(\mathbb{F}_{q^{m}}) \to \mathbb{F}_{q}$$
$$(f,g) \mapsto \operatorname{Tr}_{q^{m}/q} \left(\sum_{i=0}^{m-1} f_{i}g_{i} \right)$$

$$\hat{L}(x) = \sum_{i=0}^{m-1} a_i^{q^{m-i}} x^{q^{m-i}}$$

ADJOINT CODE

Adjoint of
$$L(x) = \sum_{i=0}^{m-1} a_i x^{q^i}$$
 w.r.t. b

$$\hat{L}(x) = \sum_{i=0}^{m-1} a_i^{q^{m-i}} x^{q^{m-i}}$$

ADJOINT CODE

$$C_T = {\hat{L} : L \in C} \subseteq \mathcal{L}_m(\mathbb{F}_{q^m}).$$

THE EQUIVALENCE ISSUE

 $C \subset M_{n,m}(\mathbb{F}_q)$ non-necessarily linear.

$m \neq n$

 $C \sim C'$ iff there are $X \in GL_n(q)$, $Y \in GL_m(q)$, $Z \in M_{n,m}(\mathbb{F}_q)$ and $\sigma \in Aut(\mathbb{F}_q)$:

$$C' = \{X\sigma(C)Y + Z : C \in C\}$$

m = n: EQUIVALENT

 $C \sim C'$ iff there are $X, Y \in GL_n(q), Z \in M_n(\mathbb{F}_q)$ and $\sigma \in Aut(\mathbb{F}_q)$:

$$C' = \{X\sigma(C)Y + Z : C \in C\}$$

THE EQUIVALENCE ISSUE

m = n: Weakly equivalent

 $C \sim C'$ iff there are $X, Y \in GL_n(q), Z \in M_n(\mathbb{F}_q)$ and $\sigma \in Aut(\mathbb{F}_q)$:

$$C' = \{X\sigma(C)Y + Z : C \in C\}$$

or

$$C' = \{X\sigma(C_T)Y + Z : C \in C\}$$

Equivalent to the code C or C_T .

THE EQUIVALENCE ISSUE

If linear we can suppose Z = 0.

Difficult to decide on equivalence.

IDEALIZERS

Liebhold and Nebe – Lunardon, Trombetti and Zhou Let $C \subset M_{n,m}(\mathbb{F}_q)$

Left - MIDDLE NUCLEUS

$$L(C) := \{ Y \in M_n(\mathbb{F}_q) : \ YA \in C \ \forall A \in C \}$$

RIGHT - RIGHT NUCLEUS

$$R(C) := \{Z \in M_m(\mathbb{F}_q) : AZ \in C \, \forall A \in C\}$$

IDEALIZERS

Lunardon, Trombetti Zhou

 $C, C' \leq M_{n,m}(\mathbb{F}_q)$ linear MRMC. Suppose $C \sim C'$. Then their left (right) idealizers are equivalent.

 $C \leq M_{n,m}(\mathbb{F}_q)$ linear MRMC.

$$L(C_T) = R(C)_T$$
 and $R(C_T) = L(C)_T$
 $L(C^{\perp}) = L(C)_T$ and $R(C^{\perp}) = R(C)_T$

IDEALIZERS

Lunardon, Trombetti Zhou

 $C \leq M_{n,m}(\mathbb{F}_q)$ linear MRMC. Let $d_{min}(C) = d > 1$.

$n \leq m$

L(C) is a finite field whose size does not exceed q^n

$n \ge m$

R(C) is a finite field whose size does not exceed q^m For n=m they are both finite fields.

IDEALIZERS IN TERMS OF LINEARIZED POLYNOMIALS

$$L(C) = \{ \phi \in \mathcal{L}_m(\mathbb{F}_{q^m}) : \phi \circ f \in C \, \forall f \in C \}$$

$$R(C) = \{ \phi \in \mathcal{L}_m(\mathbb{F}_{q^m}) : f \circ \phi \in C \, \forall f \in C \}$$

\mathbb{F}_{q^m} -LINEARITY

$$F_m = \{\alpha x : \alpha \in \mathbb{F}_{q^m}\}$$

Left

$$L(C) = F_m$$

RIGHT

$$R(C) = F_m$$

Csajbók-Marino-Polverino-Zanella-Zhou

C \mathbb{F}_q -linear MRD-code, $\dim(C)=mk$ with parameters [m,m,q;m-k+1]. Then L(C) has maximum order q^{mk} if and only if there exists another MRD code, $C'\sim C$ that is \mathbb{F}_{q^m} -linear on the left.

C \mathbb{F}_q -linear MRD-code, $\dim(C)=mk$ with parameters [m,m,q;m-k+1]. Then R(C) has maximum order q^{mk} if and only if there exists another MRD code, $C'\sim C$ that is \mathbb{F}_{q^m} -linear on the right.

GABIDULIN CODES

$$k \le n-1$$

$$\mathcal{G}_k = \left\{ \sum_{i=0}^{k-1} a_i x^{q^i}, \ a_i \in \mathbb{F}_{q^n} \right\} = \langle x, x^q, ..., x^{q^{k-1}} \rangle$$

GENERALIZED

$$k \leq n-1$$
, $GCD(s, n) = 1$

$$\mathcal{G}_{k,s} = \left\{ \sum_{i=0}^{k-1} a_i x^{q^{si}}, \ a_i \in \mathbb{F}_{q^n} \right\} = \langle x, x^{q^s}, ..., x^{q^{s(k-1)}} \rangle$$

TWISTED GABIDULIN CODES - SHEEKEY

$$k \leq n-1, \eta \in \mathbb{F}_{q^n}$$
 with $N_{q^n/q}(\eta) \neq (-1)^{nk}$

$$\mathcal{H}_k(\eta,h) = \left\{a_0^{q^h} \eta x^{q^k} + \sum_{i=0}^{k-1} a_i x^{q^i}, \ a_i \in \mathbb{F}_{q^n}\right\}$$

GENERALIZED - SHEEKEY

$$k \leq n-1$$
, $GCD(s,n) = 1$, $\eta \in \mathbb{F}_{q^n}$ with $N_{q^n/q}(\eta) \neq (-1)^{nk}$

$$\mathcal{H}_{k,s}(\eta,h) = \left\{ a_0^{q^h} \eta x^{q^{sk}} + \sum_{i=0}^{k-1} a_i x^{q^{si}}, \ a_i \in \mathbb{F}_{q^n} \right\}$$

Thew both have dimension nk.

Additive generalized twisted Gabidulin codes — Otal and Özbudak

$$k \le n-1$$
, $GCD(s,n) = 1$, $q = q_0^u \eta \in \mathbb{F}_{q^n}$ with $N_{q^n/q}(\eta) \ne (-1)^{nku}$

$$\mathcal{A}_{k,s,q_0}(\eta,h) = \left\{ a_0^{q_0^h} \eta x^{q^{sk}} + \sum_{i=0}^{k-1} a_i x^{q^{si}}, \ a_i \in \mathbb{F}_{q^n} \right\}$$

TROMBETTI AND ZHOU

n even, GCD(s,n)= 1, $\eta\in\mathbb{F}_{q^n}$ with $N_{q^n/q}(\eta)$ non-square in \mathbb{F}_q

$$\mathcal{D}_{k,s}(\eta,h) = \left\{ax + \eta bx^{sk} + \sum_{i=1}^{k-1} c_i x^{q^{si}}, \ c_i \in \mathbb{F}_{q^n}, a,b \in \mathbb{F}_{q^{n/2}}\right\}$$

CSAJBÓK-MARINO-POLVERINO-ZANELLA

$$q > 4$$
: $\exists \delta \in \mathbb{F}_{q^2}$ s.t.

$$\langle x, \delta x^q + x^{q^4} \rangle_{\mathbb{F}_{q^6}}$$

MRD with parameters (6, 6, q, 5).

ITS DUAL

equivalent to

$$\langle x^q, x^{q^2}, x^{q^4}, x - \delta^q x^{q^3} \rangle_{\mathbb{F}_{q^6}}$$

Csajbók-Marino-Polverino-Zanella

$$q$$
 odd, $\delta \in \mathbb{F}_{q^8}$ s.t. $\delta^2 = -1$

$$\langle x, \delta x^q + x^{q^5} \rangle_{\mathbb{F}_{q^8}}$$

MRD with parameters (8, 8, q, 7).

ITS DUAL

equivalent to

$$\langle x^q, x^{q^2}, x^{q^3}, x^{q^5}, x^{q^6}, x - \delta x^{q^4} \rangle_{\mathbb{F}_{q^8}}$$

Csajbók-Marino-Zullo

$$q \equiv 0, \pm 1 \mod 5$$
 odd, $\delta^2 + \delta = 1$

$$\langle x, x^q + x^{q^3} + \delta x^{q^5} \rangle_{\mathbb{F}_{q^6}}$$

MRD with parameters (6, 6, q, 5).

Marino-Montanucci-Zullo: for each q odd.

ITS DUAL

equivalent to

$$\langle x^q, x^{q^3}, -x + x^{q^2}, \delta x - \delta x^{q^4} \rangle_{\mathbb{F}_{q^6}}$$

ZANELLA-ZULLO

q odd, $q \equiv 1 \mod 4$, $q \leq 29$

$$\langle x, x^q - x^{q^2} + x^{q^4} + x^{q^5} \rangle_{\mathbb{F}_{q^6}}$$

MRD with parameters (6, 6, q, 5).

ITS DUAL

equivalent to

$$(x^{q^3}, x^q + x^{q^2}, x^q - x^{q^4}, x^q - x^{q^5})_{\mathbb{F}_{q^6}}$$

BARTOLI-ZANELLA-ZULLO

$$q \text{ odd}, h \in \mathbb{F}_{q^6} : h^{q^3+1} = -1$$

$$\langle x, h^{q-1}x^q - h^{q^2-1}x^{q^2} + x^{q^4} + x^{q^5} \rangle_{\mathbb{F}_{q^6}}$$

MRD with parameters (6, 6, q, 5).

ITS DUAL

equivalent to

$$\langle x^{q^3}, h^{q^2}x^q + h^qx^{q^2}, x^q - h^{q-1}x^{q^4}, x^q - h^{q-1}x^{q^5} \rangle_{\mathbb{F}_{q^6}}$$

Csajbók-Marino-Polverino-Zhou q odd, GCD(s, 7) = 1

$$\langle x, x^{q^s}, x^{q^{3s}} \rangle_{\mathbb{F}_{q^7}}$$

MRD with parameters (7, 7, q, 5).

ITS DUAL

equivalent to

$$\langle x, x^{q^{2s}}, x^{q^{3s}}, x^{q^{4s}} \rangle_{\mathbb{F}_{q^7}}$$

Csajbók-Marino-Polverino-Zhou

$$q \equiv 1 \mod 3$$
, $GDC(s, 8) = 1$

$$\langle x, x^{q^s}, x^{q^{3s}} \rangle_{\mathbb{F}_{q^8}}$$

MRD with parameters (8, 8, q, 6).

ITS DUAL

equivalent to

$$\langle x, x^{q^{2s}}, x^{q^{3s}}, x^{q^{4s}}, x^{q^{5s}} \rangle_{\mathbb{F}_{q^8}}$$

Thank you for your attention!