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LINEARIZED POLYNOMIALS

Polynomials of the form

r
/
L(x):= Z aix?, reN, ajeFg
i=0

r
L(Fgn) = {Z aix9, r e N, a; € Fgn)
i—0
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AND THE modular VERSION

Linearized polynomials induce Fg-linear endomorphisms of Fgn

As maps between finite fields we consider them as

n—1
L(x) = Z aix9 e Fgn [x]/(x9" = x)
i=0

n-1
Ln(Fgr) = {aIIZ aix9)
i=0
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Z a,xq Lo(x Z b,xq

Not closed for multiplication: symbolic multiplication is composition
which makes the set a ring:
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THE STRUCTURE OF L(Fqn), Ln(Fqgn)

VECTOR SPACE OVER [Fgn
sum and multiplication by elements in Fgn

ALGEBRA OVER Fg
Addition - composition - scalar multiplication by elements of Fq

Fgm C Fqn subfield (m | n); Ln(Fqn) € Ln(Fgn), Fg-subalgebra.
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ORE POLYNOMIALS

R[y], R domain (non-necessarily commutative).

CONJUGATE

a:R—->R
DERIVATIVE

0:R—R

y-r=a(r)y +é(r)
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ORE POLYNOMIALS

y-r=a(r)y +(r)

ORE EXTENSION R[y; a, 6]
* Vre Ra(r) = 0= r =0 (ainjective);
® a ring endomorphism;
® ¢ is an a-derivation

* additive,
e Vr,r' e R:6(r") = a(r)s(r') +o(r)r
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SKEW POLYNOMIALS OVER Fqn

OuwR «
g ZFqn e Fqn
y=y9
OuwR 6
6=0
Fqn [y, O']

y-a=o(a)y=ay
Itis a PID.
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We will need Ore polynomials of the form Fgn[y; .

Fgr[y; o] is a noncommutative integral domain;
Fgrly; ol is a UFD;
Fgnly; o] is right and left Euclidean domain (standard degree);

The centre of Fgn[y; o] is Fgly"; o] = Fq[z] (commutative
polynomial ring) and n the order of o;

Fgrly; o] is a PID and its prime bilateral ideals are generated
by elements of the form f(y"), with n the order of o~ and

f € Fqz] irreducible.

(See for example N. Jacobson, Finite-dimensional division
algebras over fields, Springer, Berlin, 1996).
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We can do right and left Euclidean division, so, let f, g € Fgn[y; o]

unique monic d € Fqo[y; o] of maximal degree s.t. there are
u,u € Egply; ol st. f =ud, g=u'd

unique monic m € Fgn[y; o] of minimal degree s.t. there are
u,u" € Fgply; o] st. m=uf = u'g.

unique monic F(y") € Fgn[y; o] of minimal degree in Z(Fgr[y; o)
s.t. F(y") = gf for some g € Fgn[y; 0.
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Let us consider Fqoly; o

If f factorizesas f=g1---gkx = h1--- hpm then k = mand there is a
permutation € Sy: deg(gyx(j)) = deg(h;) for each i;

If F irreducible polynomial in F4[z] then every irreducible right
divisor of F(y") in Fgn[y; o] has degree equal to deg(F) and every
right divisor of F(y™) in Fgn[y; o] has degree equal to k deg(F) for
some k € {1,...,n}

f € Fgnly; o] irreducible, then its minimal central left multiple F(y")
is s.t. F is an irreducible polynomial in F4[z] of degree deg(f).
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ORE AND LINEARIZED POLYNOMIALS

IDEA

1 X

y - x9

y? o x¥

yath — yayb 5 o xa = x(a*),

¢ Feoly; o] = L(Fgn)

r r )

i U
E ay' - E aix?
i=0 =0
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ORE AND LINEARIZED POLYNOMIALS

¢ Fely; o] = L(Fgn)

r r )
i U
Day o Y
i=0 i=0
Algebra isomorphism, so...

L(Fgn) = Fgoly; o]
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ORE AND LINEARIZED POLYNOMIALS

Two-side ideals

(y" = 1) <Egly; o]
(x9" = x) < L(Fgn)

o(y" 1) =x7" —x

Ln(Fgr) = L(Pq”)/(an - X) =Fgly;0]/(y" - 1)
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B. McDonald, Finite Rings with Identity, Dekker, New York, 1974.
Let G = Gal(Fgn/Fq) = (o)
Fqn[G]: Fgn-vector space generated by G’s elements.

(ac’)(bo) = ac(b)o = ab¥ o™, a,b € Fyp

Semilinear group ring with this kind of multiplication.
Scalar multiplication with elements in Fy: Fq-algebra.
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AND ANOTHER ISOMORPHISM

Fqn[G] - -En(]Fqn)

n-1 n-1 )

i 1
Z ajo' - Z aix?
i=0 i=0

Ln(Fqr) = Fer[C]
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B. McDonald, Finite Rings with Identity, Dekker, New York, 1974.

Mn(Fq): matrix algebra over Fq
End(Fgn): endomorphisms of Fgn over Fg.

The transformations can be induced by a linearized polynomial
over Fgn.

End(Fqn ) - ,Ln (Fqn )

n—1 n—1 )
o X9
i=0 i=0

18/49



COMPOSITION ALGEBRA

Suppose E is a K-vector space.

E* = Homy(E, K)

Tensor space: E* Qg E: consider the multiplication, Vi, b € E*,
Vx1,X € E
(I1 ® X1 )(/2 ® X2) =k (Xg)lg ® X1

and the expand via linearity.
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Associative non-commutative algebra.
A :E* ® E — Endk(E)
(Iex)(y) » I(y)x

Isomorphism when dimg(E) is finite giving

E* ® E = Endk(E)
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IN OUR CASE

E = Fqn; diqu(E) =n

We know

So...

Ln(Pq”) = Fqn

i

®F, Fgn
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DICKSON MATRICES

DICKSON MATRIX / 0 —CIRCULANT

Dy = (a7,) € My(Fqn)

ASSOCIATED TO

n-1 )
L(x):= Z aix?
i=0
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The linear transformation associated to L, if B = {Bo, ..., 8n—1}, can
be described as

M. = (87) " DL (87)
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DICKSON MATRICES

AN F, — algebra

Dn(Far) = (87 )Mn(Fer) (87 )

Dn(Fgn) = My(Fq) = Ln(Fqn)
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C < Mpm(Fq), we can see it as a subspace of Hom(Fg', Fg).

We can see Fj as a subspace of Fg' considering Hom(Fg, Fg) as
the subspace of Hom(Fg, Fg') whose image is indeed contained in
Ff. We recall also that F' = Fqn and that End(Fgm) = Ly (Fqm)
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LINEARIZED POLYNOMIALS AND RMC

We can see a RMC as Fq-subspace of L (Fgm)

We can then restate definitions in terms of linearized polynomials.
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ExamMPLE: DuALITY

f’ ge Lm(qu)
BILINEAR FORM

b :Lm(qu) X Lm(qu) e Fq

m-1
(f,g) = Trgn/q {Z f,-g,']

i=0

DuaLiTy
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ADJOINT CODE

Adjoint of L(x) = X aix¥ w.r.t.

BILINEAR FORM

t) :.l:nq(H:q"7) >< .l:n7(E:q"7) — E:q

m-1
(f,9) = Trgm/q [Z figi]

i=0
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ADJOINT CODE

Adjoint of L(x) = X' aix? w.rt. b
II:(X) _ 251—01 aiqm_fxqui

ADJOINT CODE

Cr=1{L:LeCC Lin(Fgm).
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THE EQUIVALENCE ISSUE

C C My,m(Fq) non-necessarily linear.

m+n
C ~ (' iffthere are X € GLy(q), Y € GLm(q), Z € M, m(Fq) and
o € Aut(Fq):

C'={Xo(C)Y+Z: CeC)

M = N: EQUIVALENT
C ~ (' iffthere are X, Y € GLn(q), Z € M,(Fq) and o € Aut(Fy):

C' ={Xo(C)Y+Z: CeC)
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THE EQUIVALENCE ISSUE

m = N. WEAKLY EQUIVALENT
C ~' (' iffthere are X, Y € GLn(q), Z € My(Fq) and o € Aut(Fy):

C'={Xo(C)Y+Z: CeC}

or
C' ={Xo(Cr)Y+Z: CeC)

Equivalent to the code C or Cr.

31/49



THE EQUIVALENCE ISSUE

If linear we can suppose Z = 0.

Difficult to decide on equivalence.
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IDEALIZERS

Liebhold and Nebe — Lunardon, Trombetti and Zhou
Let C € Mpm(Fq)

LEFT — MIDDLE NUCLEUS

L(C) :={Y € My(Fq) : YA €CYA €C)

RIGHT — RIGHT NUCLEUS

R(C) :={Z € Mn(F,) : AZ €CVYA €C}
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C,C" < My m(Fq) linear MRMC. Suppose C ~ C'.
Then their left (right) idealizers are equivalent.

C < My,m(Fq) linear MRMC.
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C < Mpm(Fq) linear MRMC. Let dmin(C) = d > 1.
L(C) is a finite field whose size does not exceed q"

R(C) is a finite field whose size does not exceed g™
For n = m they are both finite fields.
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IDEALIZERS IN TERMS OF LINEARIZED POLYNOMIALS

L(C)=1{p € Ln(Fgm):¢pofeCVfeC}

R(C) ={¢ € Ln(Fgn) : fop e CV¥feC)
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qu-LINEARITY

Fm = {ax : a € Fgn}
LEFT
L(C) = Fm

RigHT
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C Fg-linear MRD-code, dim(C) = mk with parameters

[m, m, q; m -k + 1]. Then L(C) has maximum order g™ if and
only if there exists another MRD code, C’ ~ C that is Fgm-linear on
the left.

C Fg-linear MRD-code, dim(C) = mk with parameters

[m, m,q; m - k + 1]. Then R(C) has maximum order g™ if and
only if there exists another MRD code, C’ ~ C that is Fgm-linear on
the right.
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SoME MRD coDES

GABIDULIN CODES
k<n-1

k-1
i k—1
Gk = {Z aix?, aje Fqn} =x,x9 ..., x7 )

i=0

GENERALIZED
k <n-1,GCD(s,n) =1

k-1
si S s(k-1)
Gks = {Z aix9 ‘, aj € Fqn} =, x7,..., x9 )
i=0
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SoME MRD coDES

TwiSTED GABIDULIN CODES - SHEEKEY
k < n—1,n¢€Fg with Nqn/q(i]) * (_1)nk

k-1
h i
Hy(n, h) = {ag 77qu + Z aix9, aj e Fqn}

i=0

GENERALIZED - SHEEKEY
k<n-1, GCD(S, n) =1,n¢ Fqn with Nq”/q(n) # (_1)nk

k-1
h sk si
Hi,s(n, h) = {ag nx9" + Z aix?, aj € ]Fqn}
i=0

Thew both have dimension nk.

40/49



SoME MRD coDES

ADDITIVE GENERALIZED TWISTED GABIDULIN CODES — OTAL AND
OzBUDAK
k<n-1,GCD(s,n) =1, q = g n € Fgn with Ngn/q(n) # (1)

k-1
qh sk Si
Ak,s,q0(m, h) = {ao"nxq + Z ax?, aj € Fqn}
i=0

TROMBETTI AND ZHOU
neven, GCD(s,n) =1, n € Fg with Ngr/q(n7) non-square in Fy

k-1
Dis(n.h) = {ax +nbx™ + )" cxT, ¢ eFyp,a,b € Fqn/z}
i=1

i=
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SoME MRD coDES

CsAIBOK-MARINO-POLVERINO-ZANELLA
q>4:36€Fgpst.

(x,6x9 4 x9' )F o6
MRD with parameters (6,6, g,5).

ITs puAL
equivalent to
2 4
(X9, xT X x = 69xT )

MRD with parameters (8, 6, g, 3).
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SoME MRD coDES

CsAIBOK-MARINO-POLVERINO-Z ANELLA
godd, § € Fg s.t. 62 = —1

(x,6x9 + x& )F g

MRD with parameters (8,8,q,7).

ITS DUAL
equivalent to

2 3 5 6
(x9,x9, x93, x9,x9, x —6xq4>n:q8

MRD with parameters (8,8, g, 3).
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SoME MRD coDES

CsAIBOK-MARINO-ZULLO
g=0,+1 mod 50dd, 6> +¢6 =1

o, x9 + xT 4 ox9 Y6

MRD with parameters (6,6, g,5).
Marino-Montanucci-Zullo: for each q odd.

ITs puaL
equivalent to \ ,
x4, xT,—x +x9,6x — 6Xq4>]pq6

MRD with parameters (6, 6, g, 3).
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SomeE MRD coDES

Z ANELLA-ZULLO
godd,g=1 mod 4,9g<29

x,x9 = x% 4 x4 Xq5>Iqu
MRD with parameters (8, 6, g, 5).

ITS DUAL
equivalent to

3 2 4 5
XT x4+ xT X3 = x5, X9 = xT )z

MRD with parameters (8, 6, g, 3).
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SoME MRD coDES
BARTOLI-ZANELLA-ZULLO
qodd, h € Fe: h®+1 = —1
(x, h91x9 = h@1x4" 1 x4 4 Xq5>IFq5

MRD with parameters (8, 6, g, 5).

ITs puAL
equivalent to

3 2 2 _ — 5
(XT hTx9 4 h9xT x9 — ha-1x@" X9 _ ha-1x4 Y

MRD with parameters (8, 6, g, 3).
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SoME MRD coDES

CsAIBOK-MARINO-POLVERINO-ZHOU
g odd, GCD(s,7) =1

S 3s
xx7, xT e
MRD with parameters (7,7, q,5).

ITs puaL
equivalent to
q2s q33 q4s
OGXT X X e

MRD with parameters (7,7, q,4).
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SoME MRD coDES

CsAIBOK-MARINO-POLVERINO-ZHOU
g=1 mod 3, GDC(s,8) =1

S 3s
X xT X9 )p
MRD with parameters (8,8, g, 6).

ITs puaL
equivalent to

5s

2S 3s S
(X, X0 xT° X9 x4 )F g

MRD with parameters (8,8, g,4).
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Thank you for your attention!
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